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Models of thermal explosion in a closed system are studied at the macroscopic 
level, where a nonlinear rate equation is solved numerically, at the stochastic 
level, where the corresponding master equation is solved numericalIy and also 
analyzed through a 1IN expansion (N is the number of particles in the system) 
and at the atomistic level, where molecular dynamics simulations of reacting 
hard disks are carried out. We find that for 800 particles (N= 800) simulation 
gives sufficient agreement with the macroscopic description of the average 
concentration. In the region of N =  50-2000 the stochastic and molecular 
dynamics results show significant overlap with each other; as expected, the 
effects of fluctuations decrease with increasing N. Under a low-temperature 
condition (slow reaction rate), a regime which cannot be realized in molecular 
dynamics simulation, direct numerical solution of the master equation reveals a 
bimodal distribution during times comparable to a correlation time. This 
behavior of transient bifurcation, which had been discussed previously, is shown 
to be a result of small system size. 

KEY WORDS:  Adiabatic explosion models; nonlinear fluctuations; master 
equation and I/N expansion; molecular dynamics simulation. 

1. I N T R O D U C T I O N  

It is well known that a system of reacting particles can exhibit rapid 
transient behavior as a consequence of strong nonlinearities inherent in the 
reaction kinetics. Such transients are traditionally studied by means of 
continuum rate equations with or without spatial effects. However, in a 
more fundamental approach to the understanding of reactive systems it 
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would be necessary to consider the effects of fluctuations as the systems are 
driven far from equilibrium (see, e.g., refs. 1). For  thermal fluctuations in 
nonlinear chemical systems, analysis of a model of adiabatic explosion (2~ 
has shown, among other features, the existence of a multipeak concentra- 
tion distribution of reactants, a behavior which has been called "time 
bifurcation" or "internal time differential, ''(3) and "transient bimodality. ''(4~ 
Since this behavior clearly arises from fluctuations, further investigations of 
the nature of such fluctuations seem worthwhile. 

In this work we present a study of adiabatic explosion at three com- 
plementary levels, a macroscopic level based on a nonlinear rate equation, 
a stochastic level involving a master equation with a certain transition rate, 
and the atomistic level of molecular dynamics simulation. Since fluctua- 
tions are absent in the macroscopic equation, this level of analysis provides 
the reference results for the delineation of fluctuation effects treated at the 
other two levels. By combining the stochastic description with dsiscrete- 
particle simulation, we obtain a test of the master equation formulation 
and solution, as well as an extension of the simulation study to larger 
system sizes (number of particles). To our knowledge, such an integrated 
approach has not been reported previously. 

In adiabatic explosion (explosion in a closed vessel/5/) all the energy 
released from a reaction is converted into raising the system temperature. 
This property enables the reactant concentration to be directly related to 
the system temperature, thus simplifying the analysis significantly. At the 
macroscopic level one has a rate equation of the Arrhenius form, and the 
time-dependent reactant concentration therefore can be determined by 
quadrature. In formulating the corresponding master equation description, 
one has a system of coupled equations governing the probability distribu- 
tion function, with Arrhenius kinetics expressed through an appropriate 
transition probability. For  pure death processes as is the present case, the 
equations can be given a series solution (3~ which, in practice, becomes 
difficult to compute for a large number of particles. In the case of molecular 
dynamics simulation there is also a restriction on the number of particles 
that can be studied, although the reason here is one of computational 
burden in contrast to the problem o f  convergence in the above series 
solution. Although the connection between the different methods of descrip- 
tion may be intuitively clear, the objective of this study is to work out the 
results in detail to investigate the complementarity between these methods. 

In Section 2 we define the basic adiabatic explosion model and 
consider two slightly different versions, one corresponding to unimolecular 
reactions (z3) and the other to collision-induced reactions. In Section 3 we 
begin with the master equation for pure death processes and express it as 
an equation for a conditional average. The latter is then solved in a 1IN 
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expansion, where N is the number of particles in the system. This solution 
is useful for examining the effects of fluctuations since in the limit of large 
N all fluctuation effects vanish and one recovers the solution to the macro- 
scopic rate equation. In Section4 we briefly describe the molecular 
dynamics model of two-dimensional hard disks used to simulate adiabatic 
explosion. The results of all three levels of analysis are presented and 
discussed in Section 5. The broader implications of these results are 
discussed in the concluding remarks given in Section 6. 

2. A D I A B A T I C  E X P L O S I O N  M O D E L S  

In modeling rapid exothermic reactions in a closed system/2'31 we 
imagine reactant particles A undergoing reactions at a rate k which has a 
temperature dependence of the Arrhenius form. Product particles B formed 
are inert, and since no energy can be transferred to the surroundings, all 
the heat of reaction goes into raising the system temperature. In the case 
of unimolecular reaction (2'31 

A ~Erl , B (2.1) 

One can also consider a bimolecular reaction 

A + A  k ' E r 1 ~ A + B  (2.2) 

which would be appropriate to collision-induced processes in gas phases. 
The reaction rates k i T ]  and k ' [ T ]  will have somewhat different concen- 
tration dependence (and therefore different temperature dependence); on 
the other hand, the fluctuation behavior of the two models should not 
differ qualitatively. 

In terms of a macroscopic description the problem is to study the time 
dependence of the reactant concentration. If we let ~A(t) denote the 
average number of particles A at time t, and N the total number of 
particles in the system, then the concentration 2( t )=  ~A(t) /N satisfies 

d:?(t) 
dt kt(s (2.3) 

with reaction rate 1~(2) depending on the model adopted. For the 
unimolecular reaction, (2.1), which we wil call model a, one has 

#a = ~n A e -  u/r (2.4) 
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where e is a proportionality constant, U is the activation energy, and T is 
the temperature (in units of Boltzmann's constant). For the collision- 
induced reaction, (2.2), model b, 

#b=~,nAzAAe U/r (2.5) 

where e' is another constant and ZAA is the collision frequency. Using 
the expression for hard spheres in the limit of low velocity, v ~ v r, where 
v r=  (2T/m,~) m is the thermal velocity, with m A being the particle mass, 
one finds ZAA = 2X/Z~ nAa2Avr. 

Since we restrict our considerations to a pure death process only, 
#(~) > 0, so the concentration must decrease monotonically with time until 
all reactants are exhausted. As the system evolves toward this final state, 
it will pass through a transient period when /~(2) is near its maximum. 
During this period, which we may characterize as ignition or explosion, 
the system appears to be most chaotic and fluctuations effects are most 
pronounced. (2-4) 

The macroscopic equation (2.3) gives no information about fluctua- 
tions. For a stochastic description one can introduce a master equation, 

dP(n, t l no) 
=l~(n+ l ) P ( n +  l, t l no ) - i~ (n )P(n ,  tlno) (2.6) 

dt 

where P(n, t[no) is the probability of having n number of A particles at 
time t given that at t = 0 there were no particles of this species. The initial 
condition is P(n, 0In0)=  6,,,0; also, in order that (2.6) holds for n = 0  to 
no, one needs to specify #(no+ 1)= /~(0)=0 .  

Both the macroscopic and the stochastic descriptions are specified 
once the reaction rate ~(2) or #(n) is known. For the two models above we 
can write 

#a(n) = an exp[ - U/(T m - ron/CvN)] (2.7) 

/~b(n) = c~"n2 x / T  exp [ - U / ( T m -  r~n/C,N)l  (2.8) 

where ~" is a constant, Tm is the maximum temperature (system tem- 
perature in its final state), r~ is the heat of reaction, and C~ is the specific 
heat. In rearranging the Arrhenius factor, we have used the adiabatic 
condition 

C~ T +  run~N= C~ T m (2.9) 

Neither model a nor model b is tractable from the standpoint of 
analytical study. As a simplified nonlinear model which is amenable to 
analysis, we will consider the quadratic approximation (model c) 

#c(n) = yn(1 - n/N) (2.10) 
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where ~ is a constant. This quadratic approximation is a special form of the 
more general Malthus-Verhulst equation which includes both a birth and 
a death rate. Notice that #c(n) follows from #~(n) if T~> U and rvno >> To, 
where To is the initial system temperature To= T,~-Gno/CoN.  We will 
find that the behavior of this model is useful for understanding the nature 
of the double hump in the probability distribution function. This model has 
been used in the literature in population studies. (6) 

Models a and b involve three parameters, which can be chosen to be 
the initial concentration xo=no /N  and dimensionless initial and final 
temperatures 0 o = To/U and 0., = Tm/U. In contrast, model c involves only 
the parameter 7. In this model one cannot choose the initial concentration 
to be Xo = 1, since that would make #c identically zero and the system 
would never react. In practice any value Xo < 1 would not give rise to this 
difficulty. 

3. T H E  1IN E X P A N S I O N  

In order to analyze the stochastic behavior of the adiabatic explosion 
models, we will introduce a method of treating the master equation for 
pure death processes. We begin with the backward form of the master 
equation(7 lo) 

dP(n, t l no) 
#(no)[P(n, t[ n o -  1) - P(n, t[ no)] (3.1) 

dt 

One can show that this description is equivalent to the forward form of the 
master equation (2.6). Baras et aI. have given a series solution to (2.6) with 
the reaction rate #a(n) of (2.7). ~ In actual computation, this solution is 
useful only for small N, otherwise one encounters a problem of 
convergence of the alternating series. Other methods of solving the master 
equation, such as calculating the eigenvalues of the evolution matrix or 
direct numerical solution, also become difficult when N is large. 

The method we describe here is based on a large-N expansion for 
conditional averages. Therefore it is complementary to the series solution 
or direct numerical solution. The essential ideas have been described 
previously, (~~ so we present only the main results here. 

The quantity of interest is the conditional average 

Z(no, t) -- ( f ( n )  [no >, 

= ~ f(n) P(n, t rno) 
n- -O  

(3.2) 
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where f ( n )  is any function of the number of reactant molecules. The advan- 
tage of using the backward form of the master equation becomes apparent 
when (3.1) is combined with (3.2). One obtains immediately an equation 
for the conditional average, 

dz(no, t) 
d ~  - #(n~176 - 1, t) - Z(no, t)]  (3.3) 

with X(no, t=O)=f (no ) .  We next consider only transition probabilities 
#(n) that can be expressed in the form 

il(n) = F(N) I~(n/U) 

= F(N) fi(x) (3.4) 

where x = n/N is the reactant concentration and F any arbitrary function. 
The three foregoing models are all of this form, namely, 

Fa(N ) = fiN, ~a(x) = x e x p [ -  (0 m - a x ) - l ]  (3.5) 

a  o)l 2 F o ( N ) - - f f N Z x ~ o ,  /~b(X)=~ x2exp[--(O,~--ax)  ' ]  (3.6) 

Fc(N)=fl"N,  /~c(x) = x(1 - x )  (3.7) 

where a = (0m - Oo)/Xo, and fl, fi', fl" are constants which could be allowed 
to vary with N if necessary. 

The significance of (3.4) is that the N dependence is now explicit and 
isolated. We next rewrite (3.3) as 

a)~(Xo, ~) x 1 

where z = F ( N ) t / N  and )~(Xo, r ) =  Z(xo, t) with xo=no/N. Henceforth we 
will suppress the tilde on Z and/~. By using a new time variable z, we are 
now in a position to introduce the 1/N expansion. Notice that the factor 
1/N appears in the definition of z; this is because we want the lowest-order 
equation in the expansion of (3.8) to be in the same form as the macro- 
scopic equation (2.3). Since this equation does not contain any effects 
of fluctuations, all the higher-order terms in the expansion represent 
corrections due to fluctuations. 

Expanding Z(Xo-1 /N ,  r) about the point Xo, we find that (3.8) 
becomes 

•X(Xo, z) ~Z(Xo, r) ~ 1 I~(Xo) akX(Xo, z) 
0 ~  + #(x~ c?x - - -~  - k~__ 2 ~- : -7  ( - 1)k k! C3Xo k (3.9) 
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This is still an exact equation so long as the transition rate # can be 
decomposed according to (3.4). The form of (3.9) suggests that the right- 
hand side of the equation can be treated as a perturbation. We therefore 
look for a solution in the form 

Z(Xo, r)= Z ~  z~(Xo,__o ~) (3.1o) 

Inserting (3.10) into (3.9) and matching terms with the same power of 1/N, 
we find that each function Zt(x0, z) obeys a first-order partial differential 
equation with an inhomogeneous term involving Zk(x0, r), k<~l-1. (m) 
Specifically, one obtains 

Zo(X o, r ) = f [ s  (3.11) 

-fi:(~) X4~ [y, 2(r)] dy (3.12) 
Zt(Xo, r ) = -  o " ~(Y) 

where )2(~) is the concentration determined by the macroscopic equation 
(2.3) with initial condition s = 0 )=x0 .  In (3.12), Ht is a known function 
that involves Zz-~, Zz-2,..., Zo .(l~ We see that the solution to the macro- 
scopic equation plays a central role in the solution to the master equation. 
In fact, the time dependence of Z(Xo, r) appears only through the time 
dependence of 2(~). 

Further reduction of the first two )~z(x 0, ~) functions has been carried 
out in the case of pure death processes. The conditional average now 
becomes 

.4_L 1- ('(2)(~]v ..~_ /'(1)(9~,~ Z(Xo, 'c)=f(s  N t - a  , ,,~,2 ~, , ,Z,,iJ 

1 
+ ~ [f(4)(X)Z2,4 + f(3)(-~)Z2,3 +f(2)(X)Z2,2 +f(i)(X)Z2,1] 

+ ... (3.13) 

According to this result, the conditional average of an arbitrary function 
f (x)  can be calculated once the solution of the macroscopic equation is 
known. Explicit expressions of the Zt,~[x0, 2] in terms of 2 are given in the 
Appendix. 

As (3.13) shows, the lowest-order solution for Z(Xo, r) is given simply 
by the function f evaluated at 2(r), the solution to the macroscopic 
equations (2.3). It is clear that 2(r) describes the time evolution of the 
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concentration in the absence of fluctuations, and this condition is obtained 
when N ~  Qc. Taking the large-N limit of 2(Xo, r) gives 

lira ~f(x)lxo)~=f(s 
N~oo 

= lim f f(x) h(x. r lXo) dx (3.14) 
N~oo 

which implies 

lim h(x, r [ X o ) = 6 ( x - 2 )  (3.15) 
N~cc  

with h(x, ~]Xo) being the probability distribution that is the analogue of 
P(n, t lno) in continuous concentration space. Equation (3.13) shows that 
in an infinite system, the distribution is determined completely by the 
solution to the macroscopic equation and there are no fluctuations. 

The natural quantity in any discussion of fluctuations is the variance. 
The mean squared deviation in the property f(x) can be formulated in a 
manner analogous to (3.2). One finds 

2 
(f2(x) lxo) _ [ ( f ( x ) lXo)  ]2= ~ Z1,2(Xo, r) f,2(~) 

For f (x)= x, the quantity 

a~c(r) =- 2Z,,2(Xo, r) 

= lira N[{x2lXo)~ -{xlxo)~] 
N~oo 

+ O (Nl---5) (3.16) 

(3.17) 

will be called the scaled variance in the concentration. The procedure of 
expressing the moments in a 1IN series can be applied to any order. 
One can consider two types of moments: one is the deviation from the 
macroscopic description $(r), and the other is the deviation from the actual 
average concentration (XlXo) ~. The different moments are, of course, 
related through the expression 

1 1 
<X IX 0 )'c = .~('C) ~- ~ Zl, I (Xo '  T) -~- ~ ' ~  )~2, I (Xo'  "17) "]- " ' '  (3.18) 

In order to compare the distribution function with a Gaussian, the 
following moments are useful: 

2 2 [Xz, z_~Z~, l ]+O 1 Mz(r) = ~ Zl.e + ~5 (~-g) (3.19) 
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(') M3(r)=N6--5 [-Z2,3--Z1,~Z1,2] + O  ~3 (3.20) 

24 2 4 [  l J M4(27):~'-~Z2,4-[- ~ Za,4--,~I,1X2,3-[-~XI.IZ1 2 (3.21) 

where the moments Mk(z) are defined by 

Mk(Z)= ((x-- (XlXo)~)k!Xo)~ (3.22) 

Explicit expressions for the X~,l can be found in the Appendix. It should be 
noted that the foregoing results are restricted to the class of models 
involving only pure death processes and with/z(n) separable in the sense of 
(3.4), otherwise they are completely general. 

Although an extensive study of the differences between the 1IN 
expansion ~m) described here and the s expansion of Van Kampen ~8) 
can be found in ref. 10, we briefly recall the basic ideas to facilitate the 
understanding of this section. 

The master equation description of a stochastic process has two equiv- 
alent forms, namely a backward and a forward form. The forward form of 
the master equation was used by Van Kampen as a starting point for his 
size or (2 expansion38) It describes the time evolution of the probability 
function, which then gives rise to conditional averages. Van Kampen's 
method has the disadvantage that higher approximations of the distribu- 
tion function are difficult to find. 

The backward form of the master equation, still an equation for the 
distribution function and completely equivalent to the forward form, can 
be averaged directly to yield an equation for conditional averages. This 
equation was the starting point for the size expansion of arbitrary condi- 
tional averages proposed in ref. 10. No difficulties arise when extending 
the approximations to successive higher orders. By expanding an arbitrary 
conditional average in powers of l/N, it is possible to find also the distribu- 
tion function itself. In the limit of large s a Gaussian distribution arises, 
which is in agreement with the so-called linear noise approximation. 

4. M O L E C U L A R  D Y N A M I C S  S I M U L A T I O N  

In this section we describe the simulation model for the molecular 
dynamics part of our study and the procedures used to generate the results 
that will be compared to those derived from the macroscopic equation 
(Section2) and from the 1/N expansion (Section 3). To model adiabatic 
explosion under bimolecular reactions, we consider a binary mixture of 
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two-dimensional hard disks which are identical except that species A, being 
the reactant particles, can undergo reactive collisions of the type described 
by (2.2), whereas species B, being the product particles, cannot. The condi- 
tion for a reactive collision is T~e 1 > U, where Tre I is the relative kinetic 
energy of the colliding particles along the centerline of the pair at contact. 
We have previously demonstrated that this model of reaction kinetics leads 
to an Arrhenius temperature dependence consistent with the assumption 
made in Section 2. (111 For A-A collisions which do not satisfy the condition 
Tre I > g~ the dynamics is treated correctly for the elastic scattering of 
hard disks; for all A B and B-B collisions regardless of T~I, only elastic 
scattering is allowed. 

A particular simulation run begins with all the particles being of 
species A and continues until most are converted to species B. The concen- 
tration of species A and the system temperature, defined in terms of the 
total kinetic energy of the particles, are monitored as the simulation 
proceeds. During simulation the system is periodic along one direction, 
while along the other direction the boundaries are rigid walls where any 
arriving particle will be specularly reflected. 

It is clear from the foregoing description that the simulation model is 
constructed to correspond to reaction model b. As we have shown in 
Section 2, this model is specified by three parameters, Ore, 00, and the 
initial concentration Xo. Once their values are chosen and the number of 
particles N is fixed, the simulation will give the temporal variation of the 
concentration of species A and the temperature. 

We have investigated two system sizes, N-- 50 and 800, for a relatively 
high-temperature condition, 0m----0.6 and 00=0.2. In each case 100 
independent runs (with different random number sequences) are made and 
the results averaged to given ~x) ,  N [ ~ x  2) - ~x)2] ,  and NP(x). 

5. N U M E R I C A L  R E S U L T S  

We will present four types of results using the three adiabatic explo- 
sion models described in Section 2 and two sets of temperature parameters. 
The four types of results are the solutions to the macroscopic equa- 
tion (2.3) by numerical integration, the solutions to the master equation 
(2.6) with reaction rate /~b(n) by numerical integration, the moments 
(3.18)-(3.21) obtained by the method of 1/N expansion, and MD results 
from Section 4. The temperature sets are 0o = 0.2, Om = 0.6 (hot condition) 
and 0o = 0.08, Om = 0.2 (cold condition). Much of the calculations presented 
will be for explosion model b, although we will also discuss corresponding 
results for models a and c. 

Our interest in the solutions to (2.3) is twofold. First it provides the 
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macroscopic description of a given model, the solution 2 being entirely 
determined by the death rate #(x). By comparing 2 and ~(x) for different 
models one can see quite simply the basic characteristics of each model. 
Secondly, since (2.3) contains no information about the higher-order 
moments, its solution becomes the natural reference for the delineation of 
fluctuation effects. 

Figure 1 shows a comparison of the death rate p(x) for models a and 
b at the hot and cold conditions, along with model c, which is temperature 
independent. The unimolecular reaction rate (model a) is seen to be some- 
what larger than the binary collision model (modelb); as can be expected, 
both rates are greater, the higher the temperature. The corresponding time- 
dependent average concentrations given by (2.3) are shown in Fig. 2. 
In obtaining these results, we first determine the concentration 2c at the 
inflection point where dZx/dt 2= O. Then the characteristic time r~ defined 
by the integral 

I * dx (5.1) 
~ = ~o/~(x) 

where Xo is the initial concentration, can be computed by quadrature. 
Physically, % is the time at which the macroscopic concentration shows an 
inflection point. For the two temperature conditions the values of r~. differ 
widely, 48.9 and 40,007 for the hot and cold conditions, respectively. The 
data showing the variation of 2 with r in Fig. 2 are obtained by choosing 
a sequence of 2 values and determining the corresponding r by using (5.1) 
with 2c replaced by 2. 
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Fig. !. Concentrat ion dependence of reaction-rate models a (dashed curve), b (solid curve), 
and c (dotted curve) for (a) hot  condition and (b) cold condition. 
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Fig. 2. Variation of the macroscopic concentration with time for the reaction-rate models a 
(dashed curve), b (solid curve), and c (dotted curve); the dimensionless time z is in units of 
the correlation time zc. (a) Hot condition, zc=48.9, and (b) cold condition, ~c=40,007. 

Keeping in mind that the time scales for the hot and cold temperature 
conditions differ by three orders of magnitude, one sees in Fig. 2 that both 
models a and b show a more pronounced "critical behavior" at the cold 
condition. On the basis of Figs. 1 and 2, one may expect that models a and 
b are not very different qualitatively. Since we are interested in comparing 
the master equation solutions with molecular dynamics (MD) data, we will 
mostly consider model b in the following discussions. 
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Fig. 3. Comparison of (a) average concentration <x> and (b) variance N<(x- <x)) 2> for 
reaction-rate model b and the hot condition; results for N =  50 are denoted by the dashed 
curves (master equation) and closed circles (MD), whereas for N =  800 they are labeled by 
solid curves (master equation) and open circles (MD), 
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For the master equation (2.6) we have obtained two types of solutions, 
a direct numerical solution for a series of N values and correpondingly 
solutions for the first four fluctuation moments Mk as developed in 
Section 3. First we consider a comparison of master equation and MD 
results for the same N. Figure 3 shows the average concentration and the 
variance for two N values, N =  50 and N =  800. While the two methods of 
calculation give qualitatively similar results, we see that MD data show 
more statistical variations, no doubt due mostly to the small number of 
particles in the system. Moreover, the fact that there is substantial agree- 
ment between the solutions at the larger N indicates that these two very 
different descriptions have already converged at the level of ~ x )  and {x 2 ) 
for a system of 1000 particles. Notice that the comparison with MD is 
carried out for the hot condition only; the large value of T, for the cold 
condition makes it unfeasible to carry out simulation on such a time scale. 

Although we have solved the master equation by direct integration for 
a series of N values, the computational efforts involved when N is large are 
considerable. Thus, it would be very desirable to know the N values for which 
we can apply the 1/N expansion. First we show how the concentration 
moments ~x ~} vary with N. Results for the first four moments are shown 
in Figs. 4-7; in each case both hot and cold conditions are considered. In 
the case of Fig. 4 we show the average concentration as deviations from the 
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macroscopic solution, the limiting behavior for large N. One sees a signifi- 
cant change from N--- 100 to N = 500, and smaller deviations with further 
increases in N. Using these results, one can determine the value of N 
needed to reach a certain degree of convergence. The other moments show 
similar behavior. For a pure Gaussian distribution the moments of Figs. 6 
and 7 should vanish. It is interesting to note that the deviations from the 
macroscopic concentration show different time variations for the two 
temperature conditions; there are positive deviations for the hot condition, 
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Fig. 9. 
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X 

Same as Fig. 8, except that only the N = 100 results are shown at various z/z c and the 
temperature condition is the hot condition. 

scopic equation is determined by ZI,~ [see (A10)], which is given in terms 
of #(if) and its derivative p")(ff). 

The comparison between direct numerical solutions and the 1/N 
expansion is shown in Tables I-IV. The validity of the expansion is seen to 
be quite sensitive to the temperature condition, and the behavior is 

Table I. Percent Deviation of Average Concentration (X[Xo)T Obtained by 
Using the N Expansion from That Derived Numerically from the Master 

Equation, Hot Sample Condition (90=0.2,  era=0.6 ) 

z/'c~ N = 100 N = 500 N = 1000 N = 2000 

0,1 0.00 0.00 0.00 0.00 

0,2 0.00 0.00 0.00 0.00 

0,3 0.01 0.01 0.01 0.01 

0,4 0.00 0.00 0.00 0.00 

0,5 0.00 0.00 0.00 0.00 

0,6 --0.02 0.00 0.00 0.00 

0.7 - 0 . 0 6  0.00 0.00 0.00 

0.8 - 0 . 0 8  0.00 0.00 0.00 

0.9 - 0 . 0 6  0.00 0.00 0.00 

1.0 0.07 0.00 0.00 0.00 

1.1 0.20 0.00 0.00 0.00 

1.2 0.21 0.00 0.00 0.00 
1.3 0.17 0.00 0.00 0.00 
1.4 0.16 0.00 - 0 . 0 1  0.00 

1.5 0.22 - 0.01 0.00 0.00 

1.6 0.28 -- 0.02 - 0.02 - 0.03 

1.7 0.33 - 0 . 0 2  - 0 . 0 3  --0.03 

1.8 0.34 - 0.03 - 0 . 0 5  --0.05 
1.9 0.33 - 0 . 0 4  --0.05 - 0 . 0 6  
2.0 0.29 - 0.07 -- 0.08 - 0.08 
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Table II. Percent Deviation of Average Concentration (X[Xo)T Obtained by 
Using the N Expansion from That Derived Numerically from the Master 

Equation, Cold Sample Condition (00=0.08, 9 , ,=0.2)  

r/Z c N = 100 N = 500 N = 1000 N = 2000 

0.1 0.00 0.00 0.00 0.00 
0.2 0.02 0.02 0.02 0.02 
0.3 0.02 0.01 0.03 0.01 
0.4 0.01 0.01 0.01 0.01 
0.5 -0.05 0.01 0.01 0.01 
0.6 - 0.29 0.00 0.00 0.00 
0.7 1.0 - 0.03 0.00 0.00 
0.8 28 - 0.01 - 0.04 0.00 
0.9 499 19 3.7 0.54 
1.0 -4480 -211 -55  - 14 
1.1 -2076 - 129 - 31 - 3.6 
1.2 -90  24 12 1.9 
1.3 45 22 3.3 0.36 
1.4 68 8.3 0.68 0.07 
1.5 72 2.5 0.21 0.00 
1.6 72 0.94 0.09 - 0.02 
1.7 68 0.53 0.03 -0.06 
1.8 62 0.54 0.11 0.02 
1.9 55 0.32 -0.09 -0.18 
2.0 49 0.55 0.08 -0.03 

different for the two t empera tu re  condi t ions .  F o r  the hot  cond i t ion  the 1/N 
expans ion  works  well except  poss ibly  in the smallest  system examined  
( N =  100). Since the N expans ion  gives the correct  shor t - t ime limit  [wi th  
Xl.~ and  Z2,1 vanish ing  in (3.18)],  the devia t ions  at  very shor t  t imes (cf. 
Tab le  I I ! )  are bel ieved to arise f rom numer ica l  inaccuracies  which are made  
worse  by showing the results  as a percentage.  The abso lu te  devia t ions  are 
ac tua l ly  qui te  small ;  for example ,  at  r / v c =  0.1 (Table  I I I )  they are a r o u n d  
0.0016. F o r  the cold cond i t ion  the 1IN expans ion  breaks  down  qui te  bad ly  
in the immedia t e  vicinity of  vc; at N = 2 0 0 0  there is still a sizeable 
d i sc repancy  in the second m o m e n t  (Table  IV). 

The  behav io r  of  the p robab i l i t y  d i s t r ibu t ion  P(x, r [ % ) ,  as ob ta ined  by 
direct  numer ica l  so lu t ion  of  (2.6) for mode l  b, is shown in Figs. 8 and 9 for 
the cold  and  not  condi t ions ,  respectively.  In  the former  we include the 
results  for all four  N values,  whereas  in the la t te r  we show only the results 
for the smallest  system, N =  100. In  Fig. 8 we see a clear  d i sp lay  of  b imoda l  
concen t ra t ion  d i s t r ibu t ion  in the immedia t e  vicinity of  r = ~c, the effect 
being more  p ronounced ,  the smal ler  the system size. By contras t ,  in Fig. 9 
the concen t ra t ion  d i s t r ibu t ion  at  N =  100 shows only a single peak  at all 
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Table III. Percent Deviation of Second Moment M2(T) Obtained by Using the 
N Expansion from That Derived Numerically from the Master Equation, 

Hot Sample Condition (eo=O.2, er ,=0 .6)  

r/zc N = 100 N = 500 N = 1000 N = 2000 

0.1 -0.09 -0.08 -0.08 -0.08 
0.2 -0.21 -0.15 -0.15 -0.15 
0.3 -0.33 -0.17 -0.16 -0.15 
0.4 -0.47 -0.11 -0.10 -0.10 
0.5 -0.68 -0.08 -0.06 -0.05 
0.6 - 0.63 - 0.06 - 0.03 - 0.02 
0.7 0.36 -0.01 -0.02 -0.02 
0.8 2.7 2.4 0.02 0.00 
0.9 4.7 0.22 0.06 0.01 
1.0 3.7 0.14 0.04 0.01 
1.1 - 1.8 -0.15 -0.04 -0.01 
1.2 -6.6 -0.38 -0.11 -0.04 
1.3 -7.5 -0.36 -0.10 -0.05 
1.4 -4.8 -0.17 -0.06 -0.04 
1.5 -0.71 0.09 -0.02 -0.01 
1.6 3.0 0.20 0.00 -0.05 
1.7 5.6 0.26 0.00 -0.07 
1.8 7.2 0.25 -0.02 -0.09 
1.9 7.4 0.32 -0,05 -0.12 
2.0 7.0 0.11 -0,12 -0.17 

times, and  we can be sure that  the dis t r ibut ion will remain un imoda l  in the 

large-N systems. Thus,  the b idurca t ion  behavior  is dependent  on system 
size and  the temperature  condit ion.  

6. D I S C U S S I O N S  

In  this work we have investigated the effects of f luctuations in the 

part icularly simple case of exothermic reaction in a closed system with non-  
linearities arising from the Arrhenius  kinetics and  from collisions (model b). 
Results from three consistent  levels of descriptions are presented. The 
temporal  behavior  of the reactant  concentra t ion,  determined by numeri -  
cally integrat ing the macroscopic rate equat ion,  plays the role of reference 
results in which f luctuat ion effects are totally absent, F luc tua t ion  effects are 
delineated mainly  through the master  equa t ion  description, in terms of 
direct numerica l  integrat ions  for several system sizes N, and by a 1/N 
expans ion  of the variance and higher-order deviat ions from the average 
concentra t ion.  In  addit ion,  some molecular  dynamics  results are presented 
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Table IV. Percent Deviation of Second Moment M2(T ) Obtained by Using the 
N Expansion from That Derived Numerically from the Master Equation, 

Cold Sample Condition (90=0.08, era=0.2) 

~c/zc N = 100 N = 500 N = 1000 N = 2000 

0.I -0.13 -0.24 -0.25 -0.25 
0.2 -0.69 - 1.3 - 1.3 - 1.3 
0.3 1.8 -0.58 -0.64 -0.65 
0.4 10 -0.11 -0.32 -0.37 
0.5 33 0.53 -0.22 -0.39 
0.6 53 4.0 0.82 0.13 
0.7 44 19 4.4 0.93 
0.8 -64 34 21 6.3 
0.9 - 1890 - 121 -26 2.1 
1.0 76223 4628 1437 451 
1.1 -- 1266 -41 24 42 
1.2 69 91 86 59 
1.3 96 95 74 19 
1.4 99 91 32 5.0 
!.5 99 73 8.8 1.7 
!.6 99 34 3.1 0.59 
1.7 99 10 1.3 0.17 
1.8 99 3.9 0.74 0.16 
t.9 99 1.8 0.17 -0.18 
2.0 98 1.4 0.28 -0.00 

to show how the rate equat ion  and the master  equat ion  can be modeled by 

a system of particles undergoing  coll is ion-induced reactions. 
We have shown that  the two parameters,  initial and  ma x i mum 

temperatures  00 and  Om, strongly influence both  the macroscopic and the 
f luctuat ion behavior  of  the model. At the high- temperature  condi t ion  the 

react ion rate is two orders of magni tude  larger, the incuba t ion  time rc 
(time at which the reactant  concent ra t ion  goes through an inflection point)  

is much  shorter, and  as a result the temporal  var ia t ion of the macroscopic 

reactant  concent ra t ion  is relatively more gradual  (cf. Figs. 1 and 2). Corre- 
spondingly,  one finds that  f luctuations slow down the reactant  consump-  

t ion (Fig. 4a). In  contrast ,  at the low-temperature  condit ion,  rc is greater 

by three orders of magni tude  and  the decrease of macroscopic reactant  
concent ra t ion  is much sharper at the inflection point.  An asymmetry  now 
appears in the deviat ion from macroscopic  solut ion in that  f luctuations 
cause an increase in reactant  pr ior  to zc and  a decrease in consumpt ion  
after rc (Fig. 4b). 

F r o m  a compar i son  of the macroscopic  solut ions for the two 
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temperature conditions (Fig. 2) we can anticipate that fluctuations will play 
a more pronounced role at the cold condition. It is then not too surprising 
that the system exhibits transient bimodality, a characteristic of strong, 
nonlinear fluctuations, at the cold condition. This behavior is not observed 
at the hot condition. In this connection we should remark that master 
equation results for reaction model c (which we have not shown explicitly) 
do not show bimodality behavior. Since the model does not consider 
Arrhenius kinetics and is therefore temperature independent, this is consis- 
tent with our conclusion that biomodality is associated with both strong 
nonlinearities and fluctuations, the latter being most enhanced in small 
systems. In the limit of large N, bimodality should not appear, as all 
fluctuation effects vanish. 

Because of the very different time scales involved between the two 
temperature conditions examined here, we are able to apply molecular 
dynamics simulation only in the high-temperature condition. A direct com- 
parison of particle simulation results and master equation calculations at 
the same values of N (Fig. 3) leads to the following conclusions. For small 
N (N=50) there is some discrepancy between these two approaches, 
probably due to statistical fluctuations in the simulation data, which are 
based on 100 independent runs for each value. The agreement at large N 
(N = 800) is quite pleasing, thus confirming the equivalence of our formula- 
tions of the two descriptions and the fact that the 1IN expansion discussed 
in Section 3 will be useful for examining the behavior of even larger 
systems. 

In closing, we note that the particle simulation approach to studies of 
chemically reactive systems can play a unique role in elucidating the 
importance of molecular-scale effects and testing theoretical assumptions 
concerning local equilibrium and spatial homogeneities. Recently it has 
been shown that deviations from Maxwellian valocity distribution caused 
by reactive collisions can give rise to a correction to the reaction rate. ~12) 
In the understanding of chemical oscillations, the question of spontaneous 
symmetry breaking in connection with the onset of "critical" or instability 
behavior is an issue which simulation can help address) TM In view of the 
continuing increase of computing power and interest in simulation and 
modeling, further studies clarifying the nature and importance of non- 
equilibrium or inhomogeneous effects can be highly worthwhile. 

APPENDIX  

According to Eq. (3.12), the functions Xl(Xo, r) are known once the 
functions H 1 are given. Previously we have presented explicit expressions 
for Ht, ~1~ namely, 
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i+ 1 d s 
m , [ x o , 2 ] =  ~ ( - l y # ( x ~  

s = 2  S! dxSo 

with 

21 3 

- - Z l + l  ~ [ x o , 2 ]  (A1) 

and 

Inserting (A6) into (3.12), one finds for the function Z~ the expression 

with 

X,(Xo, 2) = f(2)(2)Z1, 2 + f(')(2)Z1, l (A7) 

1 

/-C 5 dy 
(A8) 

#(2) fxo #(I)(2 ) _ #(,)(y) dy 
Zl, l -  2 Ox fl2(y) (A9) 

and 

d2f(x) r ,/~(2) 12 'gf(x)[-#(l)(2)- ]/(1)(x~ (A6) 
d x  2 =f(2)(2 ) +fo)(2) L~(xo)J /(Xo) 

Zo[Xo, 2]  = f ( 2 )  (A2) 

The derivatives of (A1) can be carried out explicitly using the relation (1~ ~a) 

d2 #(2) 
dxo #(Xo) (A3) 

For calculating the moments up to M4 we need H1, H2, and H 3 explicitly. 
The manipulations involved are quite lengthy, so we will illustrate the 
procedure by restricting ourselves to Hi:  

#(Xo) d2f(x) 
H~- 2! dx 2 (A4) 

Using (A3), we can express the derivatives of f (2 )  in terms of #(Xo), #(s 
and the derivatives of f with respect to its argument, denoted by f(n). We 
get 

df(2)dxo - f(')(2) ff~fo 

_ /~(2) f ( , / ( 2  ) (A5)  #(Xo) 
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After integration by parts, (A9) can be simplified further to give 

~(1)()~) ~()C) 1 
;(1,1- #(2) Z1'2+2#(Xo-----3 2 (A10) 

For the remaining functions Zt, k we only give the results: 

1 2 
Z2,4(X0, T ) = ~  (A2) (All)  

, 2 # ' ( ~ )  
Zm3(Xo, t) = Zt,lZl,2 + ~ (Az) 2 + 2A3 - A2 (A12) 

1 2 F3#'2(if) 2#"(x)](A2)2 z~,2(Xo,~)=~(z~,l) + L ~  ~ #(x) j  

[ -~'(~) 5 ~'(~)] A2 
+ _#(Xo~ 2/~(~)l 

6#'(y) . 1 #2(if) 1 #(if) (A13) 
+ #--~-A3+4#2(Xo) 4#(Xo) 

z~,~(Xo,~)=--- 
1 u' (~)  ~ + #"(x)  . Fu'(~z) ~"(~)  +-i # ' ( ~ ) ]  (4=)  ~ 
2 #-~ ZI,1 ~(3~) Zl,2/~1,1 '{- L 2 s(~) J 

+ F "'~(~) + #'(~)-] a~ 1 ~"(~) a~ 
L~(~) ~(~) J 2 #(~z) 
1 # ( 2 ) / # ( X o )  1 #'(2) + 

12 /z2(Xo) 12 #(2) 

Z3,4 ~- Z2 2Zl  2 JI- Z1,1[~'2,3 --  Z l ,2ZI ,1 ]  -1- (A2)  3 F 4 ~ " (X )  -'~ 
' ' L 3  #(x) 

(A14) 

16 g,2()?)~ 
3 #2(s 

+ 12 ' ~ A 2 A  3- 5 ~#'(ff)(A2)2+6A4-3A3+~-~A2 (A15) 

For arbitrary death rates the functions A~(xo, ~), defined by 

#(~) fx0 
A,= l ! 3~ i~-'(y)dy (A16) 

can only be calculated numerically. 
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